SexualGA: Gender-Specific Selection for Genetic Algorithms
نویسندگان
چکیده
Selection for reproduction in the context of Genetic Algorithms uses only one selection scheme to select parent individuals. When considering the model of sexual selection in the area of population genetics it gets obvious that the process of choosing mating partners in natural populations is different for male and female individuals. In this paper the authors introduce a new selection paradigm for Genetic Algorithms (SexualGA) based upon the concepts of male vigor and female choice of population genetics which provides the possibility to use two different selection schemes simultaneously within one algorithm. By using this new concept it is possible to simulate sexual selection in natural populations more precisely. Furthermore, SexualGA also offers far more flexibility concerning the adaptivity of selection pressure enabling the GA user to tune the algorithm more accurately.
منابع مشابه
HybridSGSA: SexualGA and Simulated Annealing based Hybrid Algorithm for Grid Scheduling
Scheduling jobs on computational grids is a compute intensive problem. Existing methods are unable to perform the required breakthrough in terms of time and cost. A Grid scheduler must use the available resources efficiently, while satisfying competing and mutually conflicting goals. The grid workload may consist of multiple jobs, with varying resource requirements and quality-of-service constr...
متن کاملA Novel Intrusion Detection Systems based on Genetic Algorithms-suggested Features by the Means of Different Permutations of Labels’ Orders
Intrusion detection systems (IDS) by exploiting Machine learning techniques are able to diagnose attack traffics behaviors. Because of relatively large numbers of features in IDS standard benchmark dataset, like KDD CUP 99 and NSL_KDD, features selection methods play an important role. Optimization algorithms like Genetic algorithms (GA) are capable of finding near-optimum combination of the fe...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملApplication of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives
Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...
متن کامل